SOCIETY 5.0 AND ITS IMPACT ON AGRICULTURAL BUSINESS AND INNOVATION: A NEW PARADIGM FOR RURAL DEVELOPMENT
DOI:
https://doi.org/10.59267/ekoPolj2403803BKeywords:
Society 5.0, agricultural business, agricultural innovation, rural developmentAbstract
This paper analyzes the impact of Society 5.0 on agricultural business and innovation, proposing a new paradigm for rural development. Society 5.0 represents the evolution beyond previous societal models, aiming to harmonize economic progress with solutions to social issues through the integration of cyberspace and physical space. Central to this model is the application of advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), robotics, big data, and augmented reality. The study focuses on the significant changes within agricultural practices and business models. Through a review and analysis of current trends, the paper presents a theoretical framework The paper also proposes the Agricultural Business and Rural Development Potential (ABRDP) index as guide for future trends and potential outcomes in the agricultural domain, offering insights into optimistic, conservative, and pessimistic scenarios for rural development.
Downloads
References
Aman Mohammadi, M., Maximiano, M. R., Hosseini, S. M., & Franco, O. L. (2023). CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications. Bioprocess and Biosystems Engineering, 46(4), 483-497. DOI:10.1007/s00449-022-02842-5
Bakator, M., Đorđević, D., & Ćoćkalo, D. (2019). Developing a model for improving business and competitiveness of domestic enterprises. Journal of Engineering Management and Competitiveness (JEMC), 9(2), 87-96. DOI:10.5937/jemc1902087B
Bryndin, E. (2020). Formation and management of Industry 5.0 by systems with artificial intelligence and technological singularity. American Journal of Mechanical and Industrial Engineering, 5(2), 24-30. DOI:10.11648/j.ajmie.20200502.12
Bwambale, E., Abagale, F. K., & Anornu, G. K. (2022). Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agricultural Water Management, 260, 107324. DOI:10.1016/j.agwat.2021.107324
Cock, J., Prager, S., Meinke, H., & Echeverria, R. (2022). Labour productivity: The forgotten yield gap. Agricultural Systems, 201, 103452. DOI:10.1016/j.agsy.2022.103452
Das, S., Ray, M. K., Panday, D., & Mishra, P. K. (2023). Role of biotechnology in creating sustainable agriculture. PLOS Sustainability and Transformation, 2(7), e0000069. DOI:10.1371/journal.pstr.0000069
Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745. DOI:10.3390/agriculture12101745
Djalic, N., Nikolic, M., Bakator, M., & Erceg, Z. (2021). Modeling the influence of information systems on sustainable business performance and competitiveness. Sustainability 13(17), 9619. DOI:10.3390/su13179619
Djordjevic, D., Cockalo, D., Bogetic, S., & Bakator, M. (2021). Modelling youth entrepreneurship intentions: A ten-year research. Journal of East European Management Studies, 26(4), 617-760. DOI:10.5771/0949-6181-2021-4-617
Djordjevic, D., Cockalo, D., Bogetic, S., & Bakator, M. (2021). Predicting Entrepreneurial Intentions among the Youth in Serbia with a Classification Decision Tree Model with the QUEST Algorithm. Mathematics, 9(13), 1487. DOI:10.3390/math9131487
FAO (2024). Food and agriculture statistics. https://www.fao.org/food-agriculture-statistics/en/
Foresti, R., Rossi, S., Magnani, M., Bianco, C. G. L., & Delmonte, N. (2020). Smart society and artificial intelligence: big data scheduling and the global standard method applied to smart maintenance. Engineering, 6(7), 835-846. DOI:10.1016/j.eng.2019.11.014
Ge, Y., Zhang, G., Meqdad, M. N., & Chen, S. (2023). A systematic and comprehensive review and investigation of intelligent IoT-based healthcare systems in rural societies and governments. Artificial Intelligence in Medicine, 102702.
Huang, S., Wang, B., Li, X., Zheng, P., Mourtzis, D., & Wang, L. (2022). Industry 5.0 and Society 5.0—Comparison, complementation and co-evolution. Journal of Manufacturing Systems, 64, 424-428. DOI:10.1016/j.jmsy.2022.07.010
Hussain, S., Maqbool, R., Hussain, A., & Ashfaq, S. (2022). Assessing the socio-economic impacts of rural infrastructure projects on community development. Buildings, 12(7), 947. DOI:10.3390/buildings12070947
Jaeger, S. R., Chheang, S. L., & Ares, G. (2022). Text highlighting as a new way of measuring consumers' attitudes: A case study on vertical farming. Food Quality and Preference, 95, 104356.
Jeločnik, M., Subić, J., & Vasiljević, Z. (2023). Supporting programs for the development of cooperatives in the Republic of Serbia. Економика пољопривреде, 70(3), 881-896.
Kaiser, N., & Barstow, C. K. (2022). Rural transportation infrastructure in low-and middle-income countries: a review of impacts, implications, and interventions. Sustainability, 14(4), 2149. DOI:10.3390/su14042149
Kasinathan, P., Pugazhendhi, R., Elavarasan, R. M., Ramachandaramurthy, V. K., Ramanathan, V., Subramanian, S., ... & Alsharif, M. H. (2022). Realization of sustainable development goals with disruptive technologies by integrating industry 5.0, society 5.0, smart cities and villages. Sustainability, 14(22), 15258. DOI:10.3390/su142215258
Khan, N., Ma, J., Kassem, H. S., Kazim, R., Ray, R. L., Ihtisham, M., & Zhang, S. (2022). Rural farmers’ cognition and climate change adaptation impact on cash crop productivity: evidence from a recent study. International Journal of Environmental Research and Public Health, 19(19), 12556.
Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285
Kusdiyanti, H., Febrianto, I., Wijaya, R., & Agustina, N. I. (2022). The innovation of sustainable business model in eco-edutourism: a way for creating society 5.0. BISMA (Bisnis dan Manajemen), 14(2), 177-191. DOI:10.26740/bisma.v14n2.p177-191
Leković, M., Cvijanović, D., Pantić, N., & Stanišić, T. (2020). Evaluative bibliometric analysis of recent trends in rural tourism literature. Economics of Agriculture, 67(4). 1265-1282. DOI:/10.5937/ekoPolj2004265L
Liu, M., Shi, P., Wang, J., Wang, H., & Huang, J. (2023). Do farmers get a greater return from selling their agricultural products through e‐commerce?. Review of Development Economics, 27(3), 1481-1508. DOI:10.1111/rode.12968
Lubna, F. A., Lewus, D. C., Shelford, T. J., & Both, A. J. (2022). What you may not realize about vertical farming. Horticulturae, 8(4), 322. DOI:10.3390/horticulturae8040322
Mahdad, M., Hasanov, M., Isakhanyan, G., & Dolfsma, W. (2022). A smart web of firms, farms and internet of things (IOT): enabling collaboration-based business models in the agri-food industry. British Food Journal, 124(6), 1857-1874. DOI:10.1108/BFJ-07-2021-0756
Nair, M. M., Tyagi, A. K., & Sreenath, N. (2021, January). The future with industry 4.0 at the core of society 5.0: Open issues, future opportunities and challenges. In 2021 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-7). IEEE. DOI:10.1109/ICCCI50826.2021.9402498
Narvaez Rojas, C., Alomia Peñafiel, G. A., Loaiza Buitrago, D. F., & Tavera Romero, C. A. (2021). Society 5.0: A Japanese concept for a superintelligent society. Sustainability, 13(12), 6567. DOI:10.3390/su13126567
Pallathadka, H., Mustafa, M., Sanchez, D. T., Sajja, G. S., Gour, S., & Naved, M. (2023). Impact of machine learning on management, healthcare and agriculture. Materials Today: Proceedings, 80, 2803-2806. DOI:10.1016/j.matpr.2021.07.042
Pavlova, Y. (2022). Economic and environmental approach to agricultural and rural development. In BIO Web of Conferences 43, 03005. EDP Sciences. DOI:10.1051/bioconf/20224303005
Pearson, S., Camacho-Villa, T. C., Valluru, R., Gaju, O., Rai, M. C., Gould, I., ... & Sklar, E. (2022). Robotics and autonomous systems for net zero agriculture. Current Robotics Reports, 3(2), 57-64. DOI:10.1007/s43154-022-00077-6
Ragazou, K., Garefalakis, A., Zafeiriou, E., & Passas, I. (2022). Agriculture 5.0: A new strategic management mode for a cut cost and an energy efficient agriculture sector. Energies, 15(9), 3113. DOI:10.3390/en15093113
Rahman, M. M., Khan, I., Field, D. L., Techato, K., & Alameh, K. (2022). Powering agriculture: Present status, future potential, and challenges of renewable energy applications. Renewable Energy, 188, 731-749. DOI:10.1016/j.renene.2022.02.065
Raj, E. F. I., Appadurai, M., & Athiappan, K. (2022). Precision farming in modern agriculture. In Smart Agriculture Automation Using Advanced Technologies: Data Analytics and Machine Learning, Cloud Architecture, Automation and IoT (pp. 61-87). Singapore: Springer Singapore. DOI:10.1007/978-981-16-6124-2_4
Rajnović, L., Vujić, T., & Vujić, M. (2023). Socially responsible business with reference to agricultural farms. Economics of Agriculture, 70(4), 1089-1100.
Rehman, A., Saba, T., Kashif, M., Fati, S. M., Bahaj, S. A., & Chaudhry, H. (2022). A revisit of internet of things technologies for monitoring and control strategies in smart agriculture. Agronomy, 12(1), 127. DOI:10.3390/agronomy12010127
Rejeb, A., Abdollahi, A., Rejeb, K., & Treiblmaier, H. (2022). Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture, 198, 107017. DOI:10.1016/j.compag.2022.107017
RZSS (2024). Baza podataka. https://www.stat.gov.rs/
Sajja, G. S., Rane, K. P., Phasinam, K., Kassanuk, T., Okoronkwo, E., & Prabhu, P. (2023). Towards applicability of blockchain in agriculture sector. Materials Today: Proceedings, 80, 3705-3708.
Shaikh, T. A., Rasool, T., & Lone, F. R. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198, 107119. DOI:10.1016/j.compag.2022.107119
Siregar, R. R. A., Seminar, K. B., Wahjuni, S., & Santosa, E. (2022). Vertical farming perspectives in support of precision agriculture using artificial intelligence: A review. Computers, 11(9), 135. DOI:10.3390/computers11090135
Sood, A., Sharma, R. K., & Bhardwaj, A. K. (2022). Artificial intelligence research in agriculture: a review. Online Information Review, 46(6), 1054-1075. DOI:10.1108/OIR-10-2020-0448
Takeshima, H. (2024). Agricultural mechanisation and gendered labour activities across sectors: Micro‐evidence from multi‐country farm household data. Journal of Agricultural Economics, 75(1), 425-456. DOI:10.1111/1477-9552.12564
Tamsah, H., & Yusriadi, Y. (2022). Quality of agricultural extension on productivity of farmers: Human capital perspective. Uncertain Supply Chain Management, 10(2), 625-636.
The World Bank (2024). Databank. https://databank.worldbank.org/
Tiwari, S. P. (2023). The Role of Technology in Rural Development in Asia: Opportunities and Challenges. Canadian Journal of Educational and Social Studies, 3(3), 1-9.
Vrabcová, P., & Urbancová, H. (2023). Sustainable innovation in agriculture: Building a strategic management system to ensure competitiveness and business sustainability. Agricultural Economics/Zemědělská Ekonomika, 69(1). DOI:10.17221/321/2022-AGRICECON
Wanniarachchi, S., & Sarukkalige, R. (2022). A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology, 9(7), 123. DOI:10.3390/hydrology9070123
Zikargae, M. H., Woldearegay, A. G., & Skjerdal, T. (2022). Empowering rural society through non-formal environmental education: An empirical study of environment and forest development community projects in Ethiopia. Heliyon, 8(3).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ekonomika poljoprivrede
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.