In the conditions of degrading resources of fertile arable land, pressing demand for food from a growing world population, and progressing urbanization and industrialization, agricultural land distribution patterns are becoming more vulnerable to a variety of socioeconomic, environmental, and food security challenges. In the context of this trilemma, there is a need to understand the extent to which farming systems will be able to cope with increasing competition for land with other uses. In this study, the authors developed an approach for predicting the likely influences of non-agricultural lands on agricultural landscapes. In the case of diverse agricultural landscapes in Russia, farming systems were mapped based on a share of agricultural land categories in the land fund across 82 administrative entities. The establishment of a rating system and application of correlation analysis allowed revealing the mismatches between the cadaster based spatial distribution of farming systems and actual inter-category relationships. The proposed framework is applicable internationally for the study of land-use patterns and simulation of agricultural land distribution systems under the influence of non-agricultural land uses.


Download data is not yet available.


1. Baker, J.M., Everett, Y., Liegel, L., & Van Kirk, R. (2014). Patterns of Irrigated Agricultural Land Conversion in a Western U.S. Watershed: Implications for Landscape-Level Water Management and Land-Use Planning. Society & Natural Resources, 27, 1145-1160. doi:
2. Bakker, M.M., Hatna, E., Kuhlman, T., & Mücher, C. (2011). Changing Environmental Characteristics of European Cropland. Agricultural Systems, 104(7), 522-532. doi:
3. Benke, K., Wyatt, R., & Sposito, V. (2011). A Discrete Simulation Approach to Spatial Allocation of Commodity Production for Revenue Optimisation over a Local Region. Journal of Spatial Science, 56(1), 89-101. doi:
4. Bichler, B., Haering, A.M., & Dabbert, S. (2005). The Determinants of the Spatial Distribution of Organic Farming in Germany. Berichte Uber Landwirtschaft – Hamburg, 83(1), 50-75.
5. Brown, D.G., Johnson, K.M., Loveland, T.R., & Theobald, D.M. (2005). Rural Land-Use Trends in the Conterminous United States, 1950-2000. Ecological Applications, 15(6), 1851-1863. doi:
6. Cocklin, C., Smit, B., & Johnston, T. (1987). Rural Land-Use Analysis and Planning: An Overview. In: C. Cocklin, B. Smit, & T. Johnston (Eds.), Demands on Rural Lands: Planning for Resource Use (pp. 3-12). New York: Taylor & Francis.
7. Deng, X., & Li, Z. (2016). Economics of Land Degradation in China. In: E. Nkonya, A. Mirzabaev, & J. von Braun (Eds.), Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development (pp. 385-399). Cham: Springer.
8. Diogo, V. (2018). Agricultural Land Systems: Explaining and Simulating Agricultural Land-Use Patterns. Amsterdam: Vrije Universiteit.
9. Diogo, V., Koomen, E., & Kuhlman, T. (2015). An Economic Theory-Based Explanatory Model of Agricultural Land-Use Patterns: The Netherlands as a Case Study. Agricultural Systems, 139, 1-16. doi:
10. Elnaggar, A. (2013). Spatial and Temporal Changes in Agricultural Lands Eastern Nile-Delta, Egypt. Journal of Soil Sciences and Agricultural Engineering, 4(3), 187-201. doi:
11. Erokhin, V. (2018). Establishing Food Security and Alternatives to International Trade in Emerging Economies. Hershey: IGI Global.
12. Erokhin, V., Gao, T., & Ivolga, A. (2020). Structural Variations in the Composition of Land Funds at Regional Scales across Russia. Land, 9(6), 201. doi:
13. Federal Service for State Registration, Cadastre and Cartography. (2020). Availability and Allocation of Lands in the Russian Federation. Retrieved from (June 26, 2020).
14. Federal State Statistics Service. All-Russian Agricultural Census 2016, Retrieved from (June 25, 2020).
15. Federal State Statistics Service. Regions of Russia, Social and Economic Indicators, Retrieved from (June 25, 2020).
16. Gärtner, D., Keller, A., & Schulin, R. (2013). A Simple Regional Downscaling Approach for Spatial Distributing Land Use Types for Agricultural Land. Agricultural Systems, 120, 10-19. doi:
17. Hägerstrand, T. (1968). Innovation Diffusion as a Spatial Process. Chicago: University of Chicago Press.
18. Irwin, E.G., & Geoghegan, J. (2001). Theory, Data, Methods: Developing Spatially Explicit Economic Models of Land Use Change. Agriculture, Ecosystems and Environment, 85(1), 7-23. doi:
19. King, R., & Burton, S. (1982). Land Fragmentation: Notes on a Fundamental Rural Spatial Problem. Progress in Human Geography, 6(4), 475-494. doi:
20. Koomen, E., Diogo, V., Dekkers, J., & Rietveld, P. (2015). A Utility-Based Suitability Framework for Integrated Local-Scale Land-Use Modelling. Computers, Environment and Urban Systems, 50, 1-14. doi:
21. Li, Y. (2010). Land Fragmentation’s Larger-Scale Farming and the Input-Output Efficiency of Rice Planter. Journal of South China Agricultural University, 10, 72-78.
22. Margules, C.R., & Pressey, R.L. (2000). Systematic Conservation Planning. Nature, 405, 243-253. doi:
23. Moll, H.A.J., Staal, S.J., & Ibrahim, M.N.M. (2007). Smallholder Dairy Production and Markets: A Comparison of Production Systems in Zambia, Kenya and Sri Lanka. Agricultural Systems, 94(2), 593-603. doi:
24. Moss, M. (1985). Land Processes and Land Classification. Journal of Environmental Management, 20, 295-319.
25. Nefedova, T. (2013). Ten Topical Issues about Rural Russia: A Geographer’s Viewpoint. Moscow: LENAND.
26. Novkovic, N., Somodji, S., & Matkovic, M. (2010). Selection of Agricultural Land for Multifunctional Agriculture. Applied Studies in Agribusiness and Commerce– APSTRACT, 4(1-2), 49-52. doi:
27. Omar, H., Joarder, A., & Riaz, M. (2015). On a Correlated Variance Ratio Distribution and Its Industrial Application. Communication in Statistics – Theory and Methods, 44(2), 261-274. doi:
28. Pan, W.K.Y., Walsh, S.J., Bilsborrow, R.E., Frizzelle, B.G., Erlien, C.M., & Baquero, F. (2004). Farm-Level Models of Spatial Patterns of Land Use and Land Cover Dynamics in the Ecuadorian Amazon. Agriculture, Ecosystems and Environment, 101(2-3), 117-134. doi:
29. Prishchepov, A., Müller, D., Dubinin, M., Baumann, M., & Radeloff, V. (2013). Determinants of Agricultural Land Abandonment in Post-Soviet European Russia. Land Use Policy, 30(1), 873-884. doi:
30. Qiu, L., Zhu, J., Pan, Y., Wu, S., Dang, Y., Xu, B., & Yang, H. (2020). The Positive Impacts of Landscape Fragmentation on the Diversification of Agricultural Production in Zhejiang Province, China. Journal of Cleaner Production, 251. doi:
31. Rounsevell, M.D.A., Annetts, J.E., Audsley, E., Mayr, T., & Reginster, I. (2003). Modelling the Spatial Distribution of Agricultural Land Use at the Regional Level. Agriculture, Ecosystems and Environment, 95(2-3), 465-479. doi:
32. Sangngam, P. (2014). Ratio Estimators Using Coefficient of Variation and Coefficient of Correlation. Modern Applied Science, 8(5), 70-79. doi:
33. Stacherzak, A., Heldak, M., Hajek, L., & Przybyla, K. (2019). State Interventionism in Agricultural Land Turnover in Poland. Sustainability, 11(6), 15-34. doi:
34. Su, S., Jiang, Z., Zhang, Q., & Zhang, Y. (2011). Transformation of Agricultural Landscapes under Rapid Urbanization: A Threat to Sustainability in Hang-Jia-Hu Region, China. Applied Geography, 31(2), 439-449. doi:
35. Tan, S., Heerink, N., & Qu, F. (2006). Land Fragmentation and Its Driving Forces in China. Land Use Policy, 23(3), 272-285. doi:
36. Tilman, D., Cassman, K., Matson, P., Naylor, R., & Polasky, S. (2002). Agricultural Sustainability and Intensive Production Practices. Nature, 418, 671-677.
37. Van de Steeg, J.A., Verburg, P.H., Baltenweck, I., & Staal, S.J. (2010). Characterization of the Spatial Distribution of Farming Systems in the Kenyan Highlands. Applied Geography, 30(2), 239-253. doi:
38. Vayssières, J., Vigne, M., Alary, V., & Lecomte, P. (2011). Integrated Participatory Modelling of Actual Farms to Support Policy Making on Sustainable Intensification. Agricultural Systems, 104(2), 146-161. doi:
39. Verburg, P.H., Erb., K.H., Mertz, O., & Espindola, G. (2013). Land System Science: Between Global Challenges and Local Realities. Current Opinions on Environment and Sustainability, 5(5), 433-437. doi:
40. Werts, C., Rock, D., Linn, R., & Joreskog, K. (1976). Comparison of Correlations, Variances, Covariances, and Regression Weights with or without Measurement Error. Psychological Bulletin, 83(6), 1007-1013. doi:
41. Yeh, C.T., & Huang, S.L. (2009). Investigating Spatiotemporal Patterns of Landscape Diversity in Response to Urbanization. Landscape and Urban Planning, 93(3-4), 151-162. doi:
42. Yerseitova, A., Issakova, S., Jakisheva, L., Nauryzbekova, A., & Moldasheva, A. (2018). Efficiency of Using Agricultural Land in Kazakhstan. Entrepreneurship and Sustainability Issues, 6(2), 558-576. doi:
How to Cite
EROKHIN, Vasilii et al. TRANSFORMATION OF AGRICULTURAL LAND DISTRIBUTION PATTERNS IN RUSSIA. Economics of Agriculture, [S.l.], v. 67, n. 3, p. 863-879, sep. 2020. ISSN 2334-8453. Available at: <>. Date accessed: 30 oct. 2020. doi:
Original scientific papers