THE CHAOTIC AGRICULTURAL PRODUCTION GROWTH MODEL: THE DANUBE COUNTRIES
Keywords:
agricultural production, growth, chaosAbstract
The ten Danube countries are : Germany, Austria, Slovakia, Hungary, Croatia, Serbia, Bulgaria, Moldova, Ukraine and Romania. The Danube countries are facing several challenges: environmental threats, insuffcient transport and energy connections, uncoordinated economy, education, research. Also, it is important to improve security system in the Danube countries. The basic aims of this paper are: frstly, to set up a chaotic agricultural production growth model , that is capable of generating stable equilibria, cycles, or chaos, and secondly, to analyze the local stability of agricultural production growth in the Danube countries in the period 1961-2009 . The estimated model confrms the local stability of agricultural production growth in the Danube countries in the observed period.
Downloads
References
2. Benhabib, J., Day, R.H.. » Characterization of Erratic Dynamics in the Overlapping Generation Model« , Journal of Economic Dynamics and Control 4: 1982, 37-55
3. Benhabib, J., Nishimura, K. » Competitive Equilibrium Cycles« , Journal of Economic Theory 35, 1985: 284-306
4. Day, R.H. »Irregular Growth Cycles« , American Economic Review 72: 1982: 406-414
5. Day, R.H.« The Emergence of Chaos from Classica Economic Growth« , Quarterly Journal of Economics 98: 1983: 200-213
6. Day, R.H. Complex Economic Dynamics Volume I: An introduction to dynamical systems and market mechanism, In: Discrete Dynamics in Nature and Society, Vol. 1 . 1997: 177-178.:MIT Press
7. Goodwin, R.M. Chaotic Economic Dynamics, Clarendon Press , Oxford, 1990
8. Grandmont, J.M. »On Enodgenous Competitive Business Cycles« , Econometrica 53, 1985: : 994-1045
9. Jablanović D. V. Chaotic Population Dynamics , Cigoja, Belgrade,2010
10. Jablanović D. V. «The Chaotic Saving Growth Model: G 7« Chinese Business Review , ISSN 1537-1506, Volume 10, Number 5, May 2011(Serial Number 95), 2011, pg. 317-327, David Publishing Company, Chicago-Libertyville, USA
11. Jablanović D. V. «The Chaotic Economic Growth Model: G7" , International Journal of Arts and Sciences, CD-ROM, ISSN: 1944-6934: 4(7): 2011, 385-399, USA
12. Li, T., Yorke, J. »Period Three Implies Chaos« , American Mathematical Monthly 8: 1975, 985-992
13. Lorenz, E.N. »Deterministic nonperiodic flow« , Journal of Atmospheric Sciences 20: 1963 :130-141
14. Lorenz, H.W. Nonlinear Dynamical Economics and Chaotic Motion, 2nd edition, Springer-Verlag, Heidelberg,1993
15. May, R.M. »Mathematical Models with Very Complicated Dynamics », Nature 261, 1976: 459-467
16. Medio, A. Chaotic Dynamics: Theory and Applications to Economics, Cambridge University Press, Cambridge, 1993
17. Medio, A. "Chaotic dynamics. Theory and applications to economics", Cambridge University Press, In: De Economist 144 (4), 1996: 695-698.
18. Medio, A. and Lines, M. "Nonlinear Dynamics. A primer" , Cambridge University Press 2001, In: De Economist 152, 2004, pp. 143-145