THE ROLE OF FINANCIAL MANAGEMENT IN USING DATA MINING IN AGRICULTURAL COMPANIES

Authors

DOI:

https://doi.org/10.59267/ekoPolj2301267A

Keywords:

agroeconomy, financial management and business, analythical metods, Data mining, group method of data acceptance

Abstract

Analytical methods are an indispensable method of auditing. Auditors typically use classical methods such as horizontal, vertical, regression analysis, such as the Z-score. Very few data mining methods are used at all, which are significantly more accurate in their results than the ones mentioned. The subject of this paper is the application of one of the most efficient methods of data so-called. Group Method of Data Handling –GMDH in agro entities.

Downloads

Download data is not yet available.

Author Biographies

Tanja Arapović Ilić, Ministry of Defence Republic of Serbia, Belgrade, Serbia

 

 

Snežana Krstić, Military Academy, University of Defence, Belgrade, Serbia

 

 

Miloš Dašić, Academy of Vocational Studies South Serbia, Blace Business School Department, Blace, Serbia

 

 

Bojan Brajković, PhD student, The University of Business Studies Banja Luka, Banja Luka, Bosnia and Herzegovina

 

 

Radovan Damnjanović, Military Academy, University of Defence, Belgrade, Serbia

 

 

Dragana Trnavac, “MB” University, Faculty of Business and Law, Belgrade, Serbia

 

 

Aleksandar Savić, Military Technical Institute, Belgrade, Serbia

 

 

References

Alvin K. Mulashani, Chuanbo Shen, Baraka M. Nkurlu, Christopher N. Mkono, Martin Kawamala, Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data, Energy, Volume 239, Part A, 2022, https://doi.org/10.1016/j.energy.2021.121915

Amiri, M., Soleimani, S. ML-based group method of data handling: an improvement on the conventional GMDH. Complex Intell. Syst. 7, 2949–2960 (2021). https://doi.org/10.1007/s40747-021-00480-0

Avakumović, J., Obradović, L., & Božić, G. (2021). Management and organization of teamwork in the function of sustainable development. Održivi razvoj, 3(2), 69-80. [in Serbian: Avakumović, J., Tešić, R., & Karić, D. (2021). Menadžment tranzicionim procesima u funkciji održivog razvoja].

Bogavac, M., Todorović, V., Karić, D., & Rosić, M. (2021). Proof in the accounting control procedure. Oditor, 7(2), 25-35. https://doi.org/10.5937/Oditor2102025B

Cherkassky V. & Mulier F. M. (2007). Learning from Data: Concepts, Theory, and Methods, 2nd edition, John Wiley - IEEE Press

Dukić-Mijatović, M., Uzelac, O., & Stoiljković, A. (2021). Agricultural sustainability and social responsibility. Ekonomika poljoprivrede, 68(4), 1109-1119.

Green, B. P., & Choi, J. H. (1997). Assessing the risk of management fraud through neural-network technology. Auditing: A Journal of Practice and Theory, 16(1), 8–28.

Ilić, B., & Tasić, S. (2021). Quantitative analysis of the role of production in value creation. Održivi razvoj, 3(1), 17-33. [in Serbian: Ilić, B., & Tasić, S. (2021). Kvantitativna analiza uloge proizvodnje u stvaranju vrednosti].

Ivakhnenko, O.G.; Ivakhnenko, G.A. (1995). “The Review of Problems Solvable by Algorithms of the Group Method of Data Handling (GMDH)”. Pattern Recognition and Image Analysis. 5 (4): 527–535.

Ivakhnenko A.G., “Polynomial Theory of Complex Systems,” in IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-1, no. 4, pp. 364-378, Oct. 1971, https://doi:10.1109/TSMC.1971.4308320

Madala, H.R.; Ivakhnenko, O.G. (1994). Inductive Learning Algorithms for Complex Systems Modeling. Boca Raton: CRC Press. ISBN 978-0849344381

Michalski. R., Carbonell.J. &.Mitchell T. (Eds.) (1983). Machine learning: An artifcial intelligence approach (Vol. I). Morgan Kaufmann, San Francisco.

Mihajlović, M., Nikolić, S., & Tasić, S. (2020). Sustainability of the economic model of contemporary economy. Održivi razvoj, 2(2), 7-13. [in Serbian: Mihajlović, M., Nikolić, S., & Tasić, S. (2020). Održivost ekonomskog modela savremene privrede].

Mihajlović, M., Stanojević, P. & Tešić, A. (2018). Knowledge management as a factor for increasing organization efficiency. Akcionarstvo, 24(1), 5-14 [in Serbian: Михајловић, М., Станојевић, П., & Тешић, А. (2018), Менаџмент знања као фактор повећања ефикасности организације].

Mrowczynska M., Sztubecki J., Group Method of Data Handling as a Tool to Determine Vertical Displacements, IOP Conf. Series: Materials Science and Engineering 471 (2019) 052077, IOP Publishing, https://doi:10.1088/1757-899X/471/5/052077

Parnicki, P. P., Živković-Petrović, D., & Tucaković, J. (2021). Financial malpractice as a destabilization factor of real financial reporting. Anali Ekonomskog fakulteta u Subotici, 57(45), 149-160. https://doi.org/10.5937/AnEkSub2145149P

Persons, O. (1995). Using financial statement data to identify factors associated with fraudulent financial reporting. Journal of Applied Business Research, 11(3), 38–46.

Rakić, S., Adamović, V., & Špiler, M. (2021). Challenges and directions of developing business communication on the global market. Oditor, 7(3), 67-103.

Ristić, K., Miljković, Lj., & Milunović, M. (2021). Investment in the banking sector as a basis for money laundering. Akcionarstvo, 27(1), 55-70

S.J. Farlow. Self-Organizing Methods in Modelling: GMDH Type Algorithms. New-York, Bazel: Marcel Decker Inc., 1984, 350 p.

Savić, B., & Obradović, N. (2020). Challenges in financial reporting about biological assets. Oditor, 6(1), 7-21.

Spathis, C., Doumpos, M., & Zopounidis, C. (2003). Using client performance measures to identify pre-engagement factors associated with qualified audit reports in Greece. The International Journal of Accounting, 38(3), 267–284.

Stice, J. (1991). Using financial and market information to identify pre- engagement market factors associated with lawsuits against auditors. The Accounting Review, 66(3), 516–533.

Tekić, D., Mutavdžić, B., Milić, D., Novković, N., Zekić, V., & Novaković, T. (2021). Credit risk assessment of agricultural enterprises in the Republic of Serbia: Logistic regression vs discriminant analysis. Ekonomika poljoprivrede, 68(4), 881-894.

Vićentijević, K. (2021). Challenges of accounting in the modern digital environment. Revizor, 24(93), 27-36. https://doi.org/10.5937/rev2193027V

Vukša. S. & Pantić, N. (2020). Profit and profit rate. Akcionarstvo, 26(1), 7-25 [in Serbian: Вукша, С., & Пантић, Н. (2020), Профит и профитна стопа].

Witten I. H. & Frank E. (2005). Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann Publishers.

Downloads

Published

2023-03-31

How to Cite

Arapović Ilić, T., Krstić, S. ., Dašić, M. ., Brajković, B. ., Damnjanović, R. ., Trnavac, D. ., & Savić, A. . (2023). THE ROLE OF FINANCIAL MANAGEMENT IN USING DATA MINING IN AGRICULTURAL COMPANIES . Ekonomika Poljoprivrede, 70(1), 267–276. https://doi.org/10.59267/ekoPolj2301267A