NEW TECHNOLOGIES AS A DRIVER OF CHANGE IN THE AGRICULTURAL SECTOR
DOI:
https://doi.org/10.5937/ekoPolj2201147RKeywords:
agriculture, digital technology, Internet of Things, sensors, drones, changeAbstract
Faced with a demographic boom, enormous urbanization and a lack of agricultural land, traditional agricultural production is losing pace with new needs and demands. Due to the increased demand for food, efforts are being made to develop technologies that would improve production, with the sustainable use of existing resources. Solving this challenge is possible by introducing Internet of Things technologies, satellite navigation, mobile communications and ubiquitous computing, which is called smart agriculture. The main goals of smart agriculture are to increase yields (provide information needed to analyze and make decisions that will maximize yields), efficient water use, more efficient agricultural operations (automation of daily activities, real-time monitoring, advanced analytics, daily and seasonal forecasting), cooperation with suppliers and public administration are more efficient and take place in real time). This article highlights the potential of the Internet of Things, big data and drones in agriculture, as well as the challenges of applying these technologies in relation to traditional agricultural practices.
Downloads
References
Al-Kahtani, M., & Karim, L. (2018). Dynamic data aggregation approach for sensor-based big data. International Journal of Advanced Computer Science and Applications, 9(7), 62-72.
Ampatzidis, Y., Partel, V., & Costa, L. (2020). Agroview: Cloud-based application to process, analyze and visualize UAV-collected data for precision agriculture applications utilizing artificial intelligence. Computers and Electronics in Agriculture, 174, 105457. doi.org/10.1016/j.compag.2020.105457
Anushree, M., & Krishna, R. (2018). A smart farming system using Arduino based technology. Int. J. Adv. Res. Ideas Innov. Technology, 4(4), 850-856.
Asghari, P., Rahmani, A. M., & Javadi, H. H. S. (2019). Internet of Things applications: A systematic review. Computer Network, 148, 241–261. doi.org/10.1016/j.comnet.2018.12.008
Bonneau, V., & Copigneaux, B. (2017). Industry 4.0 in Agriculture: Focus on IoT aspects. European Commission, Brussels, Belgium. Retrieved from https://ec.europa.eu/growth/tools-data bases/dem/monitor/content/industry-40-agriculture-focus-iot-aspects (October 25, 2020).
Chui, M., Collins, M., Patel, M. (2021). The Internet of Things: Catching up to an accelerating opportunity. McKinsey & Company, New York.
Cowie, P., Townsend, L. & Salemink, K. (2020). Smart rural futures: will rural areas be left behind in the 4th industrial revolution? Journal of Rural Studies, 79, 169-176. doi.org/10.1016/j.jrurstud.2020.08.042
FAO (2017). The future of food and agriculture - Trends and challenges. Rome. Italy. Retrieved from http://www.fao.org (October 25, 2020).
Farooq, M., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2019). A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access, 7(1), 156237-156271. doi.org/10.1109/access.2019.2949703
Forkan, A., Khalil, I., Ibaida, A., & Tari, Z. (2015). BDCaM: Big data for contextaware monitoring - A personalized knowledge discovery framework for assisted healthcare. IEEE transactions on cloud computing, 5(4), 628-641. doi.org/10.1109/tcc.2015.2440269
Gralla, P. (2018). Precision agriculture yields higher profits, lower risks. Retrieved from https://www.hpe.com/us/en/insights/articles/precision-agriculture-yields-higherprofts-lower-risks-1806.html (October 28, 2020).
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems, 29 (7), 1645–1660. doi.org/10.1016/j.future.2013.01.010
Gupta, M., Abdelsalam, M., Khorsandroo, S., & Mittal, S. (2020). Security and privacy in smart farming: Challenges and opportunities. IEEE Access, 8, 34564–34584. doi.org/10.1109/access.2020.2975142
Hilbert, M. (2016). Big data for development: A review of promises and challenges. Development Policy Review, 34(1), 135–174. doi.org/10.1111/dpr.12142
Hussein, M. S., López Ramos, J. A., & Álvarez Bermejo, J. A. (2020). Distributed Key Management to Secure IoT Wireless Sensor Networks in Smart-Agro. Sensors, 20, 2242. doi.org/10.3390/s20082242
Ingale, V., & Jadhav, D. (2016). Big Data A Great Revolution in Precision Agriculture using Predictive Weather Analysis and Soil Analysis. International Journal of Agriculture Innovations and Research, 5(3), 410-412. doi.org/10.13140/rg.2.2.32922.44488
Kamath, R., Balachandra, M., & Prabhu, S. (2019). Raspberry Pi as Visual Sensor Nodes in Precision Agriculture: A Study. IEEE Accesss, 7, 45110-45122. doi.org/10.1109/access.2019.2908846
Kim, J., Kim, S., Ju, Ch., & Son, H. (2019). Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications. IEEE Access, 4, 1-17. doi.org/10.1109/access.2019.2932119
Khanna, A., & Kaur, S. (2019). Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture. Computers and Electronics in Agriculture, 157, 218–231. doi.org/10.1016/j.compag.2018.12.039
Kumar, H., & Menakadevi, T. (2018). A review on big data analytics in the field of agriculture. International Journal of Latest Transactions in Engineering and Science, 1(4), 1-10.
Li, S., Xu, L., & Zhao, S. (2015). The internet of things: A survey. Information Systems Frontiers, 17(2), 243-259. doi.org/10.1007/s10796-014-9492-7
Li, D., Zheng, Y., & Zhao, W. (2019). Fault analysis system for agricultural machinery based on big data. IEEE Access, 7, 99136-99151. doi.org/10.1109/access.2019.2928973
Liu, S., Guo, L., Webb, H., Ya, X., & Chang, X. (2019). Internet of Things monitoring system of modern eco-agriculture based on cloud computing. IEEE Access, 7(1), 37050-37058. doi.org/10.1109/access.2019.2903720
Luck, J., Pitla, S., Shearer, S., Mueller, T., Dillon, C. Fulton, J., & Higgins, S. (2010). Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles. Computers and Electronics in Agriculture, 70(1), 19–26. doi.org/10.1016/j.compag.2009.08.003
Luković, M., Pantović, D., & Ćurčić, M. (2021). Wild edible plants in gourmet offer of ecotourism destinations: case from biosphere reserve „GolijaStudenica”. Economics of Agriculture, 68(4), 1061–1076. Doi: doi.org/10.5937/ekoPolj2104061
Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A literature review. Journal of Computer and Communications, 2015, 3, 164-173. doi.org/10.4236/jcc.2015.35021
Nalini, N., & Suvithavani, P. (2017). A Study on Data Analytics: Internet of Things & Health Care. International Journal of Computer Science and Mobile Computing, 6(3), 20-27.
Nandyala, C. S., & Kim, H. K. (2016). Big and meta data management for U-agriculture mobile services. Int. Journal of Software Engineering and Its Applications, 10(1), 257-270. doi.org/10.14257/ijseia.2016.10.2.21
Nebiker, S., Lack, N., Abächerli, M., & Läderach, S. (2016). A light weight multispectral sensor for micro UAV-opportunities for very high resolution airborne remote sensing. XXIII ISPRS Congress, Prague, Proceedings, 963-970. doi.org/10.5194/isprsarchives-XLI-B1-963-2016
Pathak, H., Kumar, G., Mohapatra, S., Gaikwad, B., & Rane J. (2020). Use of Drones in Agriculture: Potentials, Problems and Policy Needs. Publication no. 300, ICAR-National Institute of Abiotic Stress Management, Baramati. India.
Rao, G., Indira, V., Manikanta, P., & Srinivas, D. (2019). Large Scale Farming Analysis with the Help of IOT & Data Analytics. International Journal of Advanced Multidisciplinary Scientific Research, 2(3), 27-39.
Radic, V. (2020). Industry 4.0-Education 4.0-Society 5.0. Proceedings of Int. Conference “Business Trends”, Kruševac, Serbia, 1-13. [In Serbian: Radić, V. (2020). Industrija 4.0–Edukacija 4.0–Društvo 5.0. Zbornik radova Međunarodne konferencije “Trendovi u poslovanju”, Kruševac, Srbija, 1-13]. ISBN 978-86-7566-053-8. COBISS.SR-ID 21530633
Rajeswari, S., Suthendran, K., & Rajakumar, K. (2017). A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics. In: Int. Conference on Intelligent Computing and Control (I2C2) Proceedings, 1-5. doi.org/10.1109/I2C2.2017.8321902
Rasooli, M., Bhushan, B., & Kumar, N. (2020). Applicability of wireless sensor networks & IoT in saffron & wheat crops: A smart agriculture perspective. Int. Journal of Scientifc & Technology Research, 9(2), 2456-2461.
Ribarics, P. (2016). Big Data and its impact on agriculture. Ecocycles, 2(1), 33-34. doi.org/10.19040/ecocycles.v2i1.54
Ryan, M., Jellema, A., Perez-Freire, L., Poppe, K., Trajkovic, M., Vermesen, O., & Beers, G. (2021). Policy recommendations from IoF2020. Wageningen University & Research.
Sarker, M., Islam, M., Ali, M., Islam, M. S., Salam, M., & Mahmud, S. (2019). Promoting digital agriculture through big data for sustainable farm management. International Journal of Innovation and Applied Studies, 25(4), 1235-1240.
Simelli, I., & Tsagaris, A. (2015). The Use of Unmanned Aerial Systems (UAS) in Agriculture. Proceedings of 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA), Kavala, Greece, 730-736.
Shaf, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S.A.R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796. doi.org/10.3390/s19173796
Shang, X., Yin, H., Wang, Y., Li, M., & Wang, Y. (2020). Secrecy Performance Analysis of Wireless Powered Sensor Networks Under Saturation Nonlinear Energy Harvesting and Activation Threshold. Sensors, 20, 1632. doi.org/10.3390/s20061632
Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2018). Secure integration of IoT and cloud computing. Future Generation of Computer Systems, 78, 964–975. doi.org/10.1016/j.future.2016.11.031
Stubb, M. (2016). Big data in US agriculture. Congressional Research Service, Washington DC.
Teodosijevic Lazovic, S. (2020). Cybernetics in function of ambitions future of agriculture. Economics of Agriculture, 67(1), 69-85. doi.org/10.5937/ekoPolj2001069T
Tóth, M., Felföldi, J., & Szilágyi, R. (2019). Possibilities of IoT based management system in greenhouses. Georgikon for Agriculture, 23(3), 43-62.
Trendov, N., Varas, S., & Zeng, M. (2019). Digtal Technologies in Agriculture and Rural Areas - Status Report, FAO, Rome. Italy.
Tseng, F., Cho, H., & Wu, H. (2019). Applying big data for intelligent agriculturebased crop selection analysis. IEEE Access, 7(1), 116965-116974. doi.org/10.1109/access.2019.2935564
Tzounis, A., Katsoulas, N., & Bartzanas, T. (2017). Internet of Things in Agriculture, Recent Advances and Future Challenges. Biosystems Engineering, 164, 31-48. doi.org/10.1016/j.biosystemseng.2017.09.007
Wang, L., Lan, Y., Zhang, Y., Zhang, H., Tahir, M., Ou, S., Liu, X., & Chen, P. (2019). Applications and Prospects of Agricultural Unmanned Aerial Vehicle Obstacle Avoidance Technology in China. Sensors, 19(3), 642-657. doi.org/10.3390/s19030642
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. (2017). Big data in smart farming–a review. Agricultural Systems, 153(1), 69-80. doi.org/10.1016/j.agsy.2017.01.023
World Population Prospects (2019). Ten Key Findings. New York, USA. Retrieved from https://population.un.org/wpp (October 25, 2020).
Xia, C., Zhao, S., & Valle, H. (2017). Productivity in Australia’s broadacre and dairy industries. Agricultural Commodities Report, Kanbera.
Xu, L., He, W., & Shancang, Li. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233-2243. doi.org/10.1109/tii.2014.2300753
Yadav, R., Rathod, J., & Nair, V. (2015). Big data meets small sensors in precision agriculture. International Journal of Computer Applications, 975(1), 8887 - 8895.
Zikria, Y. B., Kim, S. W., Hahm, O., Afzal, K., & Aalsalem, M. Y. (2019). Internet of Things (IoT) operating systems management: Opportunities, challenges, and solution. Sensors, 19(8), 1793. doi.org/10.3390/s19081793
Zhang, C., & Kovacs, J. (2012). The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precision Agriculture, 13, 693–712. doi.org/10.1007/s11119-012-9274-5.
Zhang, H., Xing, S., & Wang, J. (2021). Security and application of wireless sensor network. Procedia Computer Science, 183, 486–492. doi.org/10.1016/j.procs.2021.02.088