A chaotic agriculture/agri-industry ratio growth model

  • Vesna Jablanović, PhD Faculty of Agriculture, University of Belgrade

Abstract

Chaos theory , as a set of ideas , attempts to reveal structure in aperiodic, unpredictable dynamic systems. Chaos embodies three important principles: (i) extreme sensitivity to initial conditions; (ii) cause and effect are not proportional; and (iii) nonlinearity.


The basic aim of this paper is to provide a relatively simple the agriculture/ agri-industry ratio growth model that is capable of generating stable equilibria, cycles, or chaos depending on parameter values.


A key hypothesis of this work is based on the idea that the coefficient π = γ +1 plays a crucial role in explaining local stability of the agriculture/agroindustry ratio, where γ is a suitable parameter.

Downloads

Download data is not yet available.

References

1 J. Benhabib , R.H. Day, » Rational Choice and Erratic Behaviour« ,Review of Economic Studies 48 : 459-471, 1981
2 J. Benhabib , R.H. Day, »Characterization of Erratic Dynamics in the Overlapping Generation Model«, Journal of Economic Dynamics and Control 4: 37-55 ,1982.
3 J. Benhabib , K. Nishimura, »Competitive Equilibrium Cycles« , Journal of Economic Theory 35: 284-306, 1985.
4 R.H. Day, »Irregular Growth Cycles », American Economic Review 72: 406-414, 1982.
5 R.H. Day, »The Emergence of Chaos from Classica Economic Growth« , Quarterly Journal of Economics 98: 200-213, 1983.
6 R.H. Day, »Complex Economic Dynamics Volume I: An introduction to dynamical systems and market mechanism » , MIT Press, In: Discrete Dynamics in Nature and Society, Vol. 1 . 177-178, 1997.
7 “Europe in fgures” , Eurostat Yearbook 2006-07, European Commission, 2007.
8 R.M. Goodwin, Chaotic Economic Dynamics, Clarendon Press, Oxford , 1990.
9 J.M.Grandmont , »On Enodgenous Competitive Business Cycles », Econometrica 53: 994-1045, 1985.
10 V.Jablanovic , »Chaotic population dynamics«, Cigoja, Belgrade,2010
11 W. Leontief »Input-output Analysis, Input-output Economics« , New York Oxford University Press, 1966;
12 W. Leontief, Wassily.« Input-Output Economics« 2nd ed. New York: Oxford University Press, 1986.
13 T. Li , J. Yorke , »Period Three Implies Chaos», American Mathematical Monthly 8: 985-992, 1975.
14 E.N.Lorenz , »Deterministic nonperiodic flow» , Journal of Atmospheric Sciences 20: 130-141, 1963.
15 H.W.Lorenz , Nonlinear Dynamical Economics and Chaotic Motion, 2nd edition, Springer-Verlag, Heidelberg, 1993.
16 R.M. May, »Mathematical Models with Very Complicated Dynamics», Nature 261: 459-467 , 1976.
17 A. Medio, Chaotic Dynamics: Theory and Applications to Economics, Cambridge University Press, Cambridge , 1993.
18 A. Medio, (1996) »Chaotic dynamics. Theory and applications to economics», Cambridge University Press, In: De Economist 144 (4), 695-698, 1996.
19 A. Medio, M. Lines, »Nonlinear Dynamics. A primer», Cambridge University Press 2001, In: De Economist 152,pp. 143-145, 2004.
20 H.O. Peitgen, H. Jürgens, D. Saupe , Chaos and Fractals-New Frontiers of Science, Springer-Verlag, New York, 1992
21 O. E. Rössler, »An equation for continuous chaos», Phys Lett. 57A:. 397-398, 1976.
22 R. Shone, »Economic Dynamics: Phase diagrams and their economic application» , In: De Economist147, 113-115, 1999.
23 P.N.V. Tu , Dynamical Systems . Springer – Verlag, 1994.
Published
2010-12-03
How to Cite
JABLANOVIĆ, Vesna. A chaotic agriculture/agri-industry ratio growth model. Economics of Agriculture, [S.l.], v. 57, n. Spec.num.2, p. 173-178, dec. 2010. ISSN 2334-8453. Available at: <http://ea.bg.ac.rs/index.php/EA/article/view/988>. Date accessed: 28 sep. 2020.