BIOMASS VALUATION IN THE CONTEXT OF SUSTAINABLE AGRICULTURAL DEVELOPMENT IN ROMANIA

Abstract

Achieving a sustainable agricultural development in Romania represents a major challenge in adapting to new environmental conditions and ecological efficiency. Agriculture has proven over time to be a sustainable producer of biomass, able to offer both in terms of main production of energy crops, and through secondary production or byproduct. In this context the main aim of the manuscript is to asses and analyzes the biomass valuation in the larger context of sustainable agricultural development in Romania. The results prove that biomass is an eligible candidate in valuing the agricultural potential and develop future mechanism in promoting renewables. Taking into consideration these aspects, the manuscript is in line with the current researches in field analyzing the biomass potential in developing new clean and sustainable energy production.

Downloads

Download data is not yet available.

References

1. Abbasi, T., & Abbasi, S.A. (2010). Biomass energy and the environmental impacts associated with its production and utilization. Renewable and sustainable energy reviews, 14(3), 919-937. doi: https://doi.org/10.1016/j.rser.2009.11.006
2. Add Energy, Retrieved from http://add-energy.ro/potentialul-energetic-al-biomaseiin-romania/ (January 28, 2020).
3. Ahn, H.K., Smith, M.C., Kondrad, S.L., & White, J.W. (2010). Evaluation of biogas production potential by dry anaerobic digestion of switchgrass–animal manure mixtures. Applied biochemistry and biotechnoogy. 160(4), 965–975. doi: https://doi.org/10.1007/s12010-009-8624-x
4. Allen, C., Metternicht, G., & Wiedmann, T. (2016). National pathways to the Sustainable Development Goals (SDGs): a comparative review of scenario modelling tools. Environmental Science & Policy, 66, 199–207. doi: https://doi.org/10.1016/j.envsci.2016.09.008
5. Anderson, J.T., & Wadgymar, S.M. (2020). Climate change disrupts local adaptation and favours upslope migration. Ecology letters, 23(1), 181-192. doi: https://doi.org/10.1111/ele.13427
6. Andrei, J., & Andreea, I. R. (2018). A trade-off between economics and environment requirements on energy crops vs. food crops in Romanian agriculture. Custos E Agronegocio On Line, 14(3), 61-82.
7. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., & Van Lier J.B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science & Technology, 59(5), 927-934. doi: https://doi.org/10.2166/wst.2009.040
8. Armeanu, D., Vintilă, G., Andrei, J.V., Gherghina, Ş.C., Drăgoi, M.C., & Teodor, C. (2018). Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve? PloS one, 13(5). doi: https://doi.org/10.1371/journal.pone.0195708
9. Bernal, M.P., Sommer, S.G., Chadwick, D., Qing, C, Guoxue, L., & Michel, Jr. (2017). Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Advances in Agronomy, 144, 143-233. doi: https://doi.org/10.1016/bs.agron.2017.03.002
10. Cho, J.K., Park, S.C., & Chang. H.N. (1995). Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresource Technology, 52(3), 245-253. doi: https://doi.org/10.1016/0960-8524(95)00031-9
11. Christensen, J.H., Kanikicharla, K.K., Aldrian, E., An, S.I., Cavalcanti, I.F.A., de Castro, M., & Kitoh, A. (2013). Climate phenomena and their relevance for future regional climate change. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1217-1308). Cambridge University Press., Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter14_FINAL.pdf, (May 03, 2020).
12. Dusmanescu, D., Andrei, J., Popescu, G.H., Nica, E., & Panait, M. (2016). Heuristic methodology for estimating the liquid biofuel potential of a region. Energies, 9(9). doi: https://doi.org/10.3390/en9090703
13. EUR-Lex, Retrieved from https://eur-lex.europa.eu/legal content/EN/TXT/PDF/?uri=CELEX:52018DC0773&from=EN (January 5, 2020).
14. European Commission (2018). Communication From The Commission To The European Parliament, The European Council, The Council, The Economic And Social Committee, The Committee Of The Regions And The European Investment Bank - A clean planet for all; A long-term strategic European vision for a prosperous, modern, competitive and climate-neutral economy, EUROPEAN COMMISSION, Brussels, 28.11.2018 COM (2018) 773 final.
15. Field, C.B., Campbell, J.E., & Lobell, D.B. (2008). Biomass energy: the scale of the potential resource. Trends in ecology & evolution, 23(2), 65-72. doi: https://doi.org/10.1016/j.tree.2007.12.001
16. Heo, N.H., Park, S.C., & Kang, H. (2004). Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge. Journal of Environmental Science and Health Part A, 39(7), 1739-1756. doi: https://doi.org/10.1081/ESE-120037874
17. Horvat, A.M., Radovanov, B., Popescu, G.H., & Panaitescu, C. (2019). A two-stage DEA model to evaluate agricultural effciency in case of Serbian districts. Economics of Agriculture, 66(4), 965-974. doi: https://doi.org/10.5937/ekoPolj1904965M
18. Independent Statistisc & Analysis, US Energy Information Administration (EIA), Retrieved from https://www.eia.gov/energyexplained/biomass/ (February 3, 2020).
19. Intergovernmental Panel on Climate Change (IPCC), Climate Change, Synthesis Report, Retrieved from https://www.ipcc.ch/report/aIntergov (May 3, 2020).
20. Jordan, A., Huitema, D., Van Asselt, H., & Forster, J. (Eds.). (2018). Governing climate change: Polycentricity in action? Cambridge University Press.
21. Juhász, L. (2011). Net present value versus internal rate of return. Economics & Sociology, 4(1), 46-53.
22. Karl, T.R., & Trenberth, K.E. (2003). Modern global climate change. Science, 302(5651), 1719-1723. doi: https://doi.org/10.1126/science.1090228
23. Lee, D.H., Behera, S.K., Kim, J.W., & Park, H.S. (2009). Methane production potential of leachate generated from Korean food waste recycling facilities: A labscale study. Waste Management, 29(2), 876-882. doi: https://doi.org/10.1016/j.wasman.2008.06.033
24. Lehr, U., Lutz, C., & Edler, D. (2012). Green jobs? Economic impacts of renewable energy in Germany. Energy Policy, 47, 358-364. doi: https://doi.org/10.1016/j.enpol.2012.04.076
25. Ministerui Economiei. Energiei si Mediului de Afaceri, Rettrieved from www.energie.gov.ro (January 21, 2020).
26. Ministerui Mediului Apelor si Paderilor, Retrieved from http://www.mmediu.ro/categorie/planul-national-de-gestionare-a-deseurilor-pngd (February 1, 2020).
27. Morato, T., Vaezi, M., & Kumar, A. (2019). Assessment of energy production potential from agricultural residues in Bolivia. Renewable and Sustainable Energy Reviews, 102, 14-23. doi: https://doi.org/10.1016/j.rser.2018.11.032
28. Pagés-Díaz, J., Pereda-Reyes, I., Taherzadeh, M.J., Sárvári-Horváth, I., & Lundin, M.(2014). Anaerobic co-digestion of solid slaughterhouse wastes with agroresidues: synergistic and antagonistic interactions determined in batch digestion assays, Chemical Engineering Journal, 245, 89–98. doi: https://doi.org/10.1016/j.cej.2014.02.008
29. Panaitescu, C., & Bucuroiu, R. (2014). Study on the composition of municipal waste in urban areas of Prahova county. Environmental Engineering & Management Journal, 13(7), 1567-1571. doi: https://doi.org/10.30638/eemj.2014.173
30. Gunaseelan, V.N. (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy, 26(4), 389-399. doi: https://doi.org/10.1016/j.biombioe.2003.08.006
31. Panaitescu, C., Bombos, D., Vasilievici, G., & Bombos, M. (2015). Reduction of hexavalent chromium by metallic iron nanoparticle. Materiale plastice, 52(4), 427- 432.
32. Rashad, F.M., Saleh, W.D., & Moselhy, M.A. (2010). Bioconversion of rice straw and certain agro-industrial wastes to amendments for organic farming systems: Composting, quality, stability and maturity indices. Bioresource Technology, 101(15), 5952-5960. doi: https://doi.org/10.1016/j.biortech.2010.02.103
33. Revista online New Projects, Retrieved from http://revista.newprojects.org/ (February 6, 2020).
34. Stoicescu, M. (2006). Research Contract – Petroleum-Gas university of Ploiesti, New Integrated Hazardous & Solid Waste Management Concept for Petrom Refneries; Lead Partener-ERM GmbH, Germany.
35. Tang, S.L., & Tang, J.H. (2003). The variable financial indicator IRR and the constant economic indicator NPV. The Engineering Economist, 48(1), 69-78. doi: https://doi.org/10.1080/00137910308965052
36. Vasilescu, I., Cicea, C., Popescu, G., & Andrei, J. (2010). A new methodology for improving the allocation of crops cost production in Romania. Journal of Food, Agriculture and Environment, 8(2), 839-842.
37. Yeganeh, A.J., McCoy, A.P., & Schenk, T. (2020). Determinants of climate change policy adoption: A meta-analysis. Urban Climate, 31, 100547. doi: https://doi.org/10.1016/j.uclim.2019.100547
38. Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929-935. doi: https://doi.org/10.1016/j.biortech.2006.02.039
Published
2020-09-29
How to Cite
PANAITESCU, Casen et al. BIOMASS VALUATION IN THE CONTEXT OF SUSTAINABLE AGRICULTURAL DEVELOPMENT IN ROMANIA. Economics of Agriculture, [S.l.], v. 67, n. 3, p. 699-717, sep. 2020. ISSN 2334-8453. Available at: <http://ea.bg.ac.rs/index.php/EA/article/view/1810>. Date accessed: 30 oct. 2020. doi: https://doi.org/10.5937/ekoPolj2003699P.
Section
Original scientific papers